
1.1. J. Solid' S"OCI.", Vol. 18. No.9. pp. 791-807. 1982
Printed in G..11 8rillin.

OO~168l1821090791-11SOl.00I0

Perpmon P.... Lid.

SENSITIVITY ANALYSIS AND OPTIMIZATION OF
AEROELASTIC STABILITY

ALEXANDER P. SEYRANIANt

Instilute for Problems in Mechanics. USSR Academy of Sciences. Moscow 117526. U.S.S.R.

(Rtet;vtd 27 Allgllst 1981; ;/1 rtI1;std form 18 Novtmbtr 1981)

AIIItnet-The present paper deals with problems concemina sensitivity analysis aDd optimization of
aeroclastit stability of distributed systems. In Sections 1-3 the optimization problem of aeroelastic: stability
of a slender willa in incompressible ftow is formulated and solved. The optimal control function II*{J) to be
determined represeats the mass and stiffness distribution a10111 a willa span. Sensitivity analysis of lutter
systems is developed. First. the sradients of flutter and diverpnce critical speeds are derived. and
necessary optimality conditions are obtained. Then the solution technique is described, and numerical
results are presented. In Section 4 the problem of delerminina the optimal distribution of nonstructural
mass a10111 the willi span. is considered. The optimality conditions are established and the baq-baq
optimal distributions are obtained.

INTRODUCTION
In recent years problems in structural optimization taking aeroelastic constraints into account
have been studied both from a theoretical point of view and with regard to their applications.
Many papers are devoted to the optimal problem of aeroelastic stability[1-18]. The formulation
of necessary conditions and their application in numerical procedures are connected with
considerable difficulties, and in spite of many papers in this field, these problems have not yet
been overcome but have given rise to different, often dubious. results. This applies to discrete
as well as to continuous systems.

The search for optimal structures is intimately connected with a sensitivity analysis of the
structure with respect to all the design variables determining the aeroelastic behaviour of the
structure. Sensitivity analysis itself provides the designer with some important information and
indicates ways of improving the structure in a rational manner[I9-21}.

In the present paper problems concerning sensitivity analysis and optimization of con
tinuous structures with respect to aeroelastic stability are considered. These questions are
studied in Sections l~, where the problem of bending-torsional ftutter of a wing is considered
and solved numerically.

1. BASIC RELATIONS

Let us consider vibrations of a long and thin wing in an incompressible air ftow. We assume
that the wing may be treated as a slender elastic beam with a straight elastic axis Oy, which is
perpendicular to the centerline of the fuselage, see Fig. I. The vertical axis Oz is directed
upwards, perpendicular to the plane of the figure. The inertia axis is by a solid line indicated in
Fig. I.

The deformation of the wing is characterized by the deftection w(y, T) and the angle of twist
8(y, T) about the elastic axis. In terms of these quantities, the equations of motion of the wing
take the form [22, 23]

(1.1 )

Here, EI and OJ denote the bending and torsional rigidities. m and 1M are the mass and the
moment of inertia per unit length. u is the distance of the axis of inertia from the elastic axis,
and L. and M. are the aerodynamic lift force and the pitching moment, respectively, about the
elastic axis.
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To describe the aerodynamic loads we use the so-called strip theory and assume a condition
of quasistationarity, according to which the aerodynamic characteristics of a wing in unsteady
motion at any time and at any strip are characterized by a rigid wing moving at constant
velocity and constant angUlar velocity, equal to the instant velocities of the strip[22, 23]. The
aerodynamic forces are then given by the relations

2 [ b(3 xn) oe low]L =C QpbV 8+- --= ----
Q Y V 4 b 01 VaT

M =c Qpb2y2[8+!(~_!n_.....!.-)a8 _1 awl
Q m V 4 b 16cm" 01 V a.,

(1.2)

where b is the chord of the wing and Xo the distance between the leading edge of the wing and
its elastic axis, and where p and V are the density and the speed of the flow, respectively. The
theoretical values of the aerodynamic coefficients cy

Q and CmQ for a thin wing of infinite span
are given by cy" =: 'If' and cm" ='If'(Xo/b -1/4), respectively.

The boundary conditions for a cantilever beam are given by the relations

8w
w =- :::: e=0 at y :::: 0

ay

a2w a(a2w) aeHI -:;::r = - HI~ =OJ - = 0 at y :::: I.
ay ay oy' oy

0.3)

The system of eqns (1.)-(1.3) represents a linear and homogeneous eigenvalue problem. The
solution is found in the general form

w(y, .,) = u(y)e"\ 8(y, 1) = v(y)e v, (1.4)

where /I is an eigenvalue and where u(y) and v(y) are the corresponding eigenfunctions. Due to
the fact that the forces are non-conservative, the eigenvalue /I is generally a complex quantity
11= q + iw; the eigenfunctions u and v are therefore also complex quantities, U =u, + iU2 and
v = VI + ;V2' respectively.

Depending upon the speed V of the flow. the amplitude of the vibrations can decrease (Re
II < O. stability) or increase (Re ,,> O. instability). Two types of instability may be distinguished:
dynamic (flutter) and static (divergence) [24]. The critical flutter speed is characterized by the
values Re II:::: O. 1m II =W ¢ O. where w is the frequency of flutter. The speed of critical
divergence is determined by II = O.

Let us write the equations of motion of the wing at the point of flutter. For this purpose we
substitute (1.4) into the eqns (1.1)-(1.3) with /I = iw. Taking V:::: V, we get a system of equations
for the eigenfunctions u(y) and v(y) in the form

Lf=[LII LI2 ](U)::::O
L21 L22 l'

(1.5)



Sensitivity analysis and optimization of aeroelastic stability

where Ljj are linear differential operators of the form

L II = -f; (El-f;) - mc,i + iwc/pb V,

L 2 "pbu2' "b2u (3 xo)12=muw-cy ",-IWCyP "'4-/1

L 21 = mO"w2+ iwcm"pb2V,

L 22 =_.! (GJ.!) -1 w2 - C"pb2 V,2 - iwc "pb) V, (~_ xo, _ _ 1T_).
dy dy m m m 4 b 16cm"

The boundary conditions for u and v follow from (1.3)

du
u =- =v =0 at y =0dy

d
2u d (d

2U) dvEI~: - EI~ = GJ - = 0 at y: I.dy dy dy dy

793

(1.6)

(1.7)

We will now consider the problem of divergence. For this purpose, we put v: 0 in
(1.4H1.6), whereby we get the self-adjoint, positive-definite eigenvalue problem [24]

ddy ( GJ ~~) +cm"pb 2 Vlvd : 0

vAO): 0, (GJ dVd
) : O.

dy ..'=(

(1.8)

Here, Vd(y) denotes the eigenfunction at divergence, and the critical divergence speed Vd is
determined by the lowest eigenvalue of the problem (1.8).

The relations (1.5HI.8) may be rewritten in non-dimensional form using the non-dimen
sional quantities

y= yll, U=uti, i o=xoll. b = bll, p=p/2/fir

fir: m/fir, 1m: Imlfir/2, EI: EIIEI, OJ= GJ/EI

ii = ull, V= VI ~ ( ~ . Iii =w/2 ~ ( ~- )

EI EI

(1.9)

where fir and £1 represent some mean values of mass density and bending rigidity, respectively.
Note that the relations (1.5HI.8) remain unchanged in the new variables, except that, in the

boundary conditions, we have to put 1 instead of I. From now on we shall use non-dimensional
quantities and drop the bars over the symbols.

Let us now introduce the control function hey). We assume that the cross-section of the
wing is a thin-walled closed profile of arbitrary geometry. If the thickness is mUltiplied by h, the
rigidities, the mass and the inertia of any cross section must also be multiplied by h, while u
and Xo remain unchanged. We shall therefore write

EI(y): EJo(y)h(y), GJ(y) = OJo(y)h(y)

Im(y) = l"'o(y)h(y), m(y) = mo(y)h(y) (1.10)

where Elo, OJo, 1"'0' and mo are some fixed stiffness and mass functions and where hey) serves
as a non-dimensional control function. For physical reasons, we must assume that hey) ~ O. A
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variation of this function will lead to new distributions of masses and stiffnesses and will
therefore inOuence the critical Outter and divergence speeds.

Our first aim is to determine the inftuence of a small variation of the control function on the
critical Outter and divergence speed. Our second aim is to raise the critical speed by means of
suitable variations of the control function h(y), keeping the total mass of the wing unchanged.

2. FUNCTIONAL GRADIENTS OF CRITICAL FLUTTER AND DIVERGENCE SPEEDS

In this section we obtain the increment of the critical Outter and divergence speeds due to a
variation 8h of the control function.

For this purpose we introduce the adjoint Outter problem [25-27] to the problem (1.5), (1.7):

(2.1)

The operators L jj are defined by the expressions (1.6). The functions q,(y) and t/!(y) are
complex and of the form q, =q,. + iq,2, '" = "'I + irlJ2. The boundary conditions have the form

q, =dq, ='" =0 at y =0dy

d
2
q, d (d

2
q,) d'"EI 7'::'E =- El 7':':! =OJ - =0 at y = I.dy dy dy dy (2.2)

It can be shown that the critical speed of flutter and frequency of this problem (2.1 H2.2)
coincide with those of the problem (1.5HI.7) because the problems are adjoint. These problems
are linear and homogeneous with respect to the vector·functions f and p. Hence, any solution is
only determined up to an arbitrary complex multiplier.

We proceed now to compute the variations. Consider first the main flutter problems (1.5),
0.7) taking relations (1.10) into account. An increment 8h(y) leads to increments of V/t w, and
the complex vector function f(y). The increments 8h(y), 8V/t and 8w are real quantities, and the
variation of the complex function f has the form

Now for the problems (1.5) and (1.7), we write the equation in variations

K(8h)f + Lv/0Vf + LJow + Lof = 0 (2.3)

(2.4)

where the matrices Lv, and L.. are produced by the matrix L, see (1.5) and (1.6), by formal
differentiation with respect to the variables Vf and w. The matrix operator K(8h) is given by the
expression

Further, we multiply eqn (2.3) by the vector function p T(y) = (q,(y), t/!(y», where p is the
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solution of the adjoint flutter problem (2.1) and (2.2), and integrate between 0 and I

795

(2.5)

Integrating by parts, taking the boundary conditions (2.2), (2.4) into account, we find that the
last term of the integrand in (2.5) vanishes

Here, the last equality follows from (2.1). The first term in (2.5) can be rewritten into the form

{ p TK(Sh)/dy = { HShdy

H = El d
2
u d

2q, + OJ. dv dt/J + tl/2 T [- mo0d?d? °dy y P motT

Using the notation

A =fa' (p TLv!)dy, B =fa' (p TLJ)dy

the equation (2.5) gets the form

fa' HShdy + ASVf + BStI/ = O.

(2.6)

(2.7)

(2.8)

Note that the function H is a complex function of the real variable y and that the constants
A and B are complex. Let us multiply (2.8) by B, the complex conjugate to B, and separate the
imaginary part. Because Im(B B) = 0 and SVf , and StI/ are both real, we get the following
expression for the variation

11 Im(HB)
sVf = ° gShdy, g =- Im(A B) (2.9)

It follows that the function g is the gradient of the functional for the critical flutter speed with
respect to the control function h.

The variation of the flutter frequency can be obtained from (2.8) in a similar manner,

-11
_ Im(HA)

&J - ° IShdy, 1- - Im(B A)' (2.10)

Thus, in order to calculate the gradients g and I, it is necessary to solve the main and the
adjoint flutter problems (1.5), (J.7) and (2.1), (2.2), and to determine the complex vector
functions I(y) and p(y) and the real quantities Vf and tI/. From (2.6) and (2.7) we can then
obtain the complex constants A and B and the complex function H, and hence determine the
gradients g and I by means of the relations (2.9) and (2.10). Note that the eigenfunctions I and p
are only determined up to arbitrary complex multipliers because the main and adjoint flutter
problems are both homogeneous, but that the gradients g and I remain unchanged if I and pare
multiplied by arbitrary complex constants.

We now proceed to determining the gradient of the critical divergence speed with respect to
the control function hey). Since the divergence problem (1.8) is self-adjoint and positive-
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definite, Rayleigh's minimum principle is valid [28], and we have

(2.11)

Here, the function v must satisfy the kinematic boundary condition v(O) = 0 and be con
tinuously differentiable. Variation of (2.11) readily gives

GJ. (dVd)2

11 0 dy
8Vd = e8hdy, e = 11

o 2Vd c","pb2 vidy
o

(2.12)

Note that because the divergence problem is self-adjoint, it is not necessary to introduce an
adjoint problem for determination of the gradient e. .

The method described above for determining the gradients of the critical speeds may also be
used to obtain gradients with respect to some other independent functions or parameters of the
problem. For example, the derivative of the critical flutter speed with respect to the density p
of the flow is given by the formula

!!:1- _Im(C B)
op - Im(A BY

Here, the quantities A and B are defined in eqn (2.7), and C is given by

C =fa' (p TLJ)dy

where the matrix Lp is obtained by differentiating L with respect to p.
Knowing the gradients of the critical flutter and divergence speeds with respect to, e.g. some

mass distributions or other parameters, we can improve the characteristics of aeroelastic
stability for a structure in a rational manner.

In fact, the influence of certain parameters on the characteristics of dynamic stability has
been investigated by several researchers, see, e.g. [22-24, 29-34]. In many dynamic stability
problems, the methods of similarity and dimensions [22, 30] provide the main basis for the
structural analysis, but generally speaking, analysis of the influence of different parameters on
the region of stability is quite difficult, because the critical values cannot normally be expressed
implicitly in terms of essential parameters of the system. In Sections 2 and 4 of the present
paper, a derivation is presented of the relations that describe the sensitivity of critical speeds
with respect to distributed and discrete parameters, which greatly influence the aeroelastic
behaviour of the system. In this derivation, use is made of the so-called adjoint system.

The method of sensitivity analysis developed in this paper becomes most effective when a
large finite (or infinite) number of essential aeroelastic parameters are considered, because the
calculation of the gradient of the critical flutter speed only call for the main and the adjoint
flutter problems to be solved once. In contrast to this, a gradient calculation based on numerical
differentiation of the critical flutter (or divergence) speed would require the ftutter (or diver
gence) problem to be solved (N + 1) times if N essential aeroelastic parameters are taken into
account. The method suggested in this paper may also prove useful for analyses of static and
dynamic instability phenomena for other distributed and discrete systems.

Sensitivity of critical values of stability with respect to vanishing internal structural
damping[31-34] should be mentioned as an example that would demand special analysis.

3. OPTIMIZATION OF AEROELASTIC STABILITY

We will now consider the problem of maximizing the critical speed at which stability is lost,



Sensitivity analysis and optimization of aeroelastic stability 797

assuming the total mass of structure material to be given. Mathematically, this problem may be
posed as

max min (V,(h), Vd(h)J = min [V,(h*), Vd(h*)]
"eO

n ={h(y): M(h) =f h(y)mo(y)dy =Mo} (3.1)

i.e. as a problem of determining the mass distribution h*(y), which, within the constraint of
given total mass M(h) =Mo, maximizes the smaller of the critical ftutter and the critical
diveraence speeds.

Let us first estimate the highest value of the critical speed that causes loss of stability. To
this end, we consider the problem of maximizing the critical divergence speed for a given
volume of material. The solution to this problem is well known[2, 3, 14J

where the maximum divergence speed vl is given by the expression

(11 )1I2[ 11( l' [m] )2 ]-112vl= 0 mody c","p 0 b 0 V 01
0

dy dy

Using the estimate [35J

max min (V,. Vd)s max Vd= Vd
O

/teO lleO

which is valid due to the inequality mine Vd, V,) S Yd. we find

(3.2)

(3.3)

where vl is defined by (3.2).
We now proceed to deriving the necessary conditions of optimality for the problem in (3.1).

The variation of the functional of the total mass is

8M =f mo(y)8h(y)dy

so the gradient of the mass functional is simply given by mo(Y). Taking into account the
gradients, and t obtained in the previous section and using the results of a maximin approach,
see [36J. we obtain the necessary optimality conditions for the optimal mass distribution h*(y).

At(y) +(1- A)g(y) + p,mo<y) = 0

A = 0 if V,(h*) < Vd(h*)

A= I if Vd(h*) < V,(h*)

Os A s I if Vd(h*) = V,(h*).

(3.4)

Here. the multipliers A and p, are defined by the isoperimetric conditions of the problem.
In the numerical solution of the maximum problem (3.1) it is necessary to vary the initial

distribution hey) in order to increase the smaller critical speed for loss of stability. Assuming
that the initial distribution hey) satisfies the condition M(h) = Mo. we may take an improved

55 Vol. II. No. 9-£
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design variation in the form
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8h(y) = a(y)[Ae(y) + (1- A)g(y) + JLmo(y)] (3.5)

where aCyl is a so-called "gradient step", that is, an arbitrary positive function chosen by the
researcher.

The two as yet unknown multipliers A and JL are defined by the isoperimetric conditions. We
will first consider the case Vf(h) < Vd(h). Taking A =0 and defining JL via substituting (3.5) into
the condition 8M = 0, we obtain

(3.6)

Analogously, we obtain for the case of Vd < Vf ,

(3.7)

Finally, if we have Vf = Yd. we can substitute (3.5) into the conditions 8Vf =8Vd and
8M = 0, and obtain the following system of linear equations

Af aCe - g)2dy + JL f aCe - g)mody = - f aCe - g)gdy

Af aCe - g)mody + JL 10
1

amo2dy = - f agmody· (3.8)

It is easily seen that the determinant of this system is a Gram determinant[19]. It is equal to
zero only when e - g and mo are linearly dependent functions.

In the case of Vf = Vd it can be shown that the variations 8Vf and 8Vd can be expressed by

which implies that our algorithm meets the condition M(h) = Mo and increases the critical
speed of instability at each step of variation. The same holds good for the cases of Vf < Vd and
Vd< Vf'

In fact. the solution procedure is similar to that developed by Niordson(19]. The main and
the adjoint flutter problem must be solved at each step of the gradient procedure for computing
the improved mass distribution. Solution of the main flutter problem (1.5), (1.7) is performed by
the method of successive iterations as described in [22], and the adjoint flutter problem is
solved by the same method with only insignificant differences in the computer program. A
comparison of the values obtained for Vf and w in these two problems yields an effective check
of the accuracy of the computations.

Also the divergence problem (1.8) is to be solved at each step of the gradient procedure. The
solution of this problem is performed by the method of successive iterations described in [28]
and gives us the critical divergence speed Yd. the eigenfunctions Vd(y) and the gradient function
e(y).

The numerical procedure (with n designating the iteration number) consists of the following
iteration steps

(1) For the first iteration (n =I). assume a distribution h(ft)(y) that satisfies the constraint
M(h(ft) = Mo. For n> 1, apply the distribution obtained by the end of the previous iteration.

(2) Solve the main and adjoint flutter problems (1.5), (1.7) and (2.1), (2.2), respectively, and
obtain the eigenfunctions u(ftl, v(ft), cf1(n), I/Icn) and their derivatives, together with the values V/"l
and Wen).
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(3) Determine HiOI(y), AlOI and BIoI by means of (2.6) and (2.7), and apply (2.9) to obtain the
gradient '01.

(4) Solve the diverlence problem (1.8) to obtain the critical quantity Vol, a10na with the
eilenfunction v" and its first derivative. Compute the gradient function t llll by means of (2.12).

(S) Compare the critical values ~!' and ~"II), and determine the constants A(II) and ",(0) by
means of the relations (3.6H3.8).

(6) Determine the variation 81rllll by (3.S) and compute the distribution function for the
subsequent iteration as hlll

+
1I = hlol + 81r Ill

).

As an numerical example, let us consider a rectangular wina with uniform initial dis
tn'butions E/o, Gla. I.... mo. b, L (T and .ro. These parameters, tosether with the quantities c: an~

c",·, are taken to be equal to those in Grossman [22J, wing No.3. The mean quantities 1ft and Ef
in (1.9) are chosen to be equal to mo and Elo, respectively. Note that accordina to (1.9), (1.10).
six nondimensional parameters and the function Ir(y),

u = u/l. Xo = XoIl. b= b/l, p= pJ2lmo

I", = (l"JmoI2)Ir(y). OJ= (GJoIElo)h(y). 1ft = Ef= h(y),

are required, besides the coefficients c: and c",·, for solution of the main and adjoint ftutter
problems. Due to the constant mo. the isoperimetric condition M(h) =Moin (3.1) takes the form
fJ h(y)dy =1. In the numerical calculations the interval [0, 1] was divided into N =20, 40 equal
subintervals, and numerical integration was performed in applying the trapezoidal rule.

We consider first the uniform initial distribution h(O) = (y) = I, which corresponds to uniform
mass and stiffness distributions along the wing span. For this distribution, the critical diver
.ence speed is much ,reater than the ftutter speed, VI = 29.4 < V" = S9.4. Hence, the optimiza
tion alaorithm described in the foregoing is reduced to maximization of ftutter speed at fixed
total mass, see (3.S) and (3.6).

Figure 2 shows how the distribution hey) and the gradient g(y) of the ftutter speed develop
during iterations. It is clearly indicated that the distribution which corresponds to a local
maximum of the critical ftutter speed tends to infinity when y~ I. Physically, this means that a
concentrated mass should be located at the free tip of the wing in order to increase the critical
speed. For a correct statement of the problem, an upper constraint h(y):s h_1 should therefore

h

z,..

0.

0.

i
0.5

Fja.2.

to
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be specified for the distribution function. In the present case we take h..... = 4.5, and the
function ho(y) and the appropriate sensitivity function go(y) that correspond to the local
maximum of the critical flutter speed are indicated by the number 3 in Fig. 2.

During the iteration process the critical flutter speed increases from the value V, == 29.4,
which corresponds to the initial distribution hIOI(y) =1, and up to the value V, =30.9 for the
distribution ho(y). At the same time, the flutter frequency changes from the initial value 107.1
and up to 112.4. Thus, the increase of the Butter speed is rather small: only about 5 pct. The
critical divergence speeds for the distributions hey) shown in Fig. 2 are much greater than the
flutter speeds.

The eigenfunctions u(y) =u,(y) +;U2(y) and Ve,) =vl(y) +;V2(Y) associated with the dis
tribution ho(y) are illustrated in Fig. 3. These functions are defined up to an arbitrary complex
multiplier, and we used normalization condition u(l) =2 in this example. Note that the
character of these curves does not change during the iteration process.

The above distribution ho(y) is obtained not only if we start the iterations from hIUI(y) == 1, but
also if we use other initial functions such as, e.g. hIOI(y) = 1.95 -1.9y.

However, it turns out that the distribution ho(y) only corresponds to a local maximum of the
critical flutter speed at given total mass. Thus, starting the iteration process (3.5), (3.6) from the
function hl(y) = 2.7(1- y)2 +0.1 leads to other results. The distribution hl(y) indicated by
number 1 in Fig. 4 is characterized by a rather low value of the flutter speed V, = 29.1
(Vd = 57.5), but for this distribution, the absolute value of the gradient g,(y) of the functional
turns out to be large (Fig. 4). Note also that the function g,(y) in Fig. 4 differs from that
presented in Fig. 2 by changing its sign. From Fig. 4 we see that the region close to the free tip
of the wing (y-+ 1) is very sensitive to variations of hey). A small removal of material from this
region will lead to a rapid increase in the value of V, (thin tip effect).

Since the gradient g,(y) attains negative values in the region [0, 1], we may conclude that V,
can be increased if we reduce the total mass of the wing. Therefore, some distributions hey)
must exist for which a reduction of mass does not contradict an increase of the critical flutter
speed.

A similar effect of gradient function attaining negative values is emphasized in the recent
work of Pedersen[2l], where problems of maximizing the frequency of free vibrations for
beams are considered. Note that according to (2.12), the gradient of the divergence speed is
always positive, so an increase in the amount of material will always lead to an increase of the
divergence speed.

A few iterations (3.5), (3.6) started from the distribution hl(y) lead to an essential increase in
the critical flutter speed. The distribution h2(y) indicated by the number 2 in Fig. 4 is associated

It

tit
if 2 l'J>V

f Vi < V;
2

002

0 05 !I fO

o.! !I if gz
20 "·fOJ

1

0 0fa
2

0 -20

-20

, uf

{I "'-.-.:::::...

o

2

o
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Fig. 3. Fig. 4.
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with the value VI =52.1, but note that the divergence speed V" for this distribution turns out to
be smaller, V" =47.8 < VI' Hence, the wing with this distribution of material loses its stability
by divergence.

It is interesting to note that during the iteration process (3.5), (3.6) from the distribution
h.(y) to h2(y), the character of the vibrations at the flutter point changes considerably, i.e. some
nodal points appear in the eiaenfunctions u(y) and v(y). In Fia. 5, the functions u(y) and v(y)
corresponding to the distribution h2(y) are presented. During the iterations the flutter frequency
increases from the value (III =224.5 and up to (112 = 262.0.

Thus, we see that the iteration process (3.5), (3.6) of maximizing the critical flutter speed
does not lead to a maximization of the smallest of the critical speeds. In order to obtain the true
optimal solution it is therefore necessary to use the further iterative formulas (3.S) and (3.8)
after attaining the equality VI =V". This process converges to the optimal distribution h*(y)
shown in Fig. 6, where it should be noted that h*(l) = O. The critical speed of aeroelastic
instability attains the value V1 = V~ =48.8, with the frequency of flutter equal to (11* =265.1.
Thus, the critical speed is increased by 66 pct. relative to the critical value for the uniform
distribution h(O) =1.

Note that the estimate of the maximum critical speed (3.3) for the case of constant mo, 010'
b takes the form

However I the distribution h"o that maximizes the divergence speed Vdo is not a solution to our
problem (3.1) because it is associated with a lower flutter speed VI =28.9 < VdO.

For the optimal distribution h*(y), the eigenmodes u*(y) and v*(y) of the vibration at flutter
are presented in Fig. 7.

We may conclude that the optimal distribution h*(y) for our problem is characterized by
equal critical values of flutter and divergence speeds. Physically this means that the optimal
structure will experience two different types of loss of stability-dynamic and static-at the
critical point. The similar effect of multiplicity of eigenmodes of optimal structures in self
adjoint problems of elastic stability was discovered by Olhoff and Rasmussen [37J and
Medvedev[38], see also [39]. In the self-adjoint case, this effect corresponds to mUltiplicity of
eigenvalues.

The problem of maximizing the critical speed of bending-torsional flutter for given weight
has earlier been considered by Vepa [4OJ, but in this work essential errors are made in the
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OPTIMAL DISTRIBUTION
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derivation of the necessary conditions of optimality: (I) the flutter frequency is not varied and
(2) the real and complex quantities are not distinguished. Thus, the conclusions and the
numerical results of this work appear to be doubtful.

In the works [6-12] on different problems of optimizing flutter instability systems, direct
methods of mathematical programming were employed. i.e. optimality criteria were not used.

4. OPTIMAL ARRANGEMENT OF NONSTRUCTURAL MASS

We now consider the problem of distributing nonstructural mass along the wing span taking
into account the influence on the characteristics of aeroelastic stability. Fuel, electronic
equipment and some loads may be considered as nonstructural masses.

Let us introduce the control function hey) by

m(y) = mo(y)(1 +h(y», Im(y) = 1"",(y)(1 + h(y» (4.1)

where mo and 1"'0 are some fixed distributions of structural mass density and mass moment of
inertia per unit length, respectively, while variable quantities moh, l"'oh are due to nonstructural
masses. It is assumed that adding nonstructural mass does not change the stiffness properties of
the wing. However. it will change the inertia properties of the structure and therefore lead to a
change of the critical flutter speed. Note, however, that the changes in the inertia properties will
have no influence on the critical divergence speed. see (1.8).

In order to calculate the variation of the critical flutter speed due to a variation Sh(y) of the



Sensitivity analysis and optimization of aeroelastic stability 803

control function, we consider the main and the adjoint ftutter problems (1.S), (1.7), (2.1) and
(2.2), and use (4.1). It is easily seen that the first variational calculations are the same as earlier,
except that the function H used in the relations (2.6), (2.8) and (2.9) takes the form

Thus. the variation 8V, is, as earlier, defined by the formulas

11 Im(H B)
8V, = 0 g8hdy, g =- Im(A B)

(4.2)

(4.3)

where the constants A and B are given by (2.7), and where the function H is now defined by
the relation (4.2).

Our optimization problem now consists in determining the distribution h*(y), which satisfies
given constraints and renders the critical ftutter speed a maximum possible value

max V,(h) = V,(h*)
Il"n

n = {h(y):M(h) = f mohdy = Mo, Os hmins h(y)s h max}. (4.4)

Clearly, Mo denotes the total amount of given nonstructural mass which is to be arranged
optimally along the wing span.

By means of the mathematical theory of optimal control [41,42] it is easily shown that the
Hamiltonian for the problem (4.4) is linear in the control function h. This implies that the correct
formulation of the optimization problem must include prescribed upper and lower limits hmin

and hma.. respectively, for the control function because the optimal control will be of the
bang-bang type.

Now we shall derive the necessary optimality conditions for the function h*(y), i.e the
solution to the optimization problem (4.4). For this purpose we rewrite the variation 8V,.
assuming that the variation 8h satisfies the constraints of the problem (4.4), and we add the
isoperimetric condition by means of the Lagrangian multiplier p.

8V, =f (g + p.mo)8hdy.

If the control function h*(y) is optimal then 8V, sO for admissible variations. Using
one-side variations we get

g(y) + p.mo(Y) > O. h*(y) = h max

g(y) + p.mo(Y) < O. h*(y) = h min .

From these relations we see that the optimal control h*(y) takes the form

h +h h -hh*(y) = max 2 mIn + max 2 min sgn (g + p.mo)

(4.5)

(4.6)

where the unknown multiplier p. can be determined from the isoperimetric condition M(h*) =

Mo·
As a numerical example, let us again consider a rectangular wing with uniform initial

distributions. see [22], wing No.3. We take the lower limit equal to zero hmin = O. The
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isoperimetric condition associated with constant rno now assumes the following form

,. hdy =Mo=K l' mody =K

Jo mo mo
(4.7)

where the parameter K indicates the ratio between the distributed nonstructural mass and the
total structural mass of the wing.

In Fig. 8 the gradient of the functional VI associated with a distribution h =0 (absence of
nonstructural mass) is presented. It is immediately seen that in order to increase the critical
flutter speed, we have to arrange the mass close to the free tip of the wing, where g(y) > 0, see
(4.3).

Figures 9 and 10 show optimal distributions h*(y) and corresponding gradients g(y) for
values of (K, hm..) taken equal to (0.45, 4.0) and (0.7, 8.0), respectively. The critical speed VI
associated with these two distributions is equal to 32.1 and 32.9, which exceed by IG--12% the
value 29.4, corresponding to absence of nonstructural mass (h =0). The above distributions
h*(y) satisfy the necessary optimality conditions (4.5) with zero value of the mUltiplier 11..

fO ~-----
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For rather large values of the ratio K/h...... the optimal control function h* may have two
switchil18 points. This case will now be investigated. From the behaviour of the functions g(y)
presented in Figs. 8-10, it is natural to expect h* =h",a. in the vicinities of y = 1 and y = O.
Assumil18 controls with two switching points we obtain

by substituting (4.6) into (4.7) and taking hrnin ., 0 into account. Here, y, and 12 (Y2 > y,) are the
coordinates of switchil18 points. We thus have

Ie
Y2= 1--+ YI

h",..
(4.8)

where, due to (4.7), K/h.....:!it I.
Thus, we find that the optimization problem with two switching points reduces to maxi

mization of V, as afunction of the single variable Y" because the second coordinate Y2 will be given
by (4.8). Note that the class of controls with two switching points also comprises controls with one
switching point.

Fiaure 11 illustrates optimal distributions h*(y) with two switching points and corresponding
gradient functions g(y) obtained for values of (Ie, hma.) taken equal to (1, 2) and (2, 4),
respectively. The flutter speed V, attains the values 30.8 and 31.2, which exceed by 5-6% the
flutter speed of a wing without added nonstructural mass.

It is interesting to compare optimal mass distributions with some other possible distributions
of nonstructural mass. Figure 12 depicts an unfavourable distribution, which is characterized by
low value of the flutter speed, V, =23.3.

On the basis of the results presented in the foregoing, we may draw the conclusion that
optimal distributions of nonstructural mass with only one switching point, which appear when
the parameter Ie/ hmu is small, are most effective. In such cases the optimal control reduces to a
concentrated mass placed at the free tip of the wing. A change in the distribution of the
nonstructural mass reduces the flutter frequency significantly (by 30-50% in the cases considered),
while the character of the flutter vibrations remains the same.

CONCLUSIONS

In this paper, sensitivity characteristics of aeroelastic stability with respect to changes of
distributed and discrete parameters are obtained by means of variational analysis. It is shown
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that besides the main flutter problem, also the so-called adjoint flutter problem has to be solved
in order to calculate the gradient appropriately. Sensitivity analysis offers the designer
valuable information by indicating rational ways of improving the structure.

In Section 3, the problem of maximizing the smaller of the flutter and the divergence speed
for a given total mass of material is formulated,and it is shown that this problem possesses at
least two extrema, but that one of them is only a local maximum. It is also demonstrated that
there exist some stiffness and mass distributions for which removal of some structural mass
may increase the critical flutter speed, the region near the free tip of the wing being particularly
sensitive to variations in the structural mass distribution h(y). Numerical solutions to the
maximum optimization problem are given, the interesting feature being that the optimal
distribution h*(y) is characterized by equality of the critical ftutter and critical divergence
speeds. This implies that the optimal structure experiences both static and dynamic loss of
stability at the critical point. This type of behaviour (multiplicity of modes of loss of stability)
has earlier been found in optimization problems of elastic stability for conservative systems.
For the problem considered in this paper, the critical speed for the optimal wing is increased by
66% in relation to that for a uniform reference wing.

In Section 4 the problem of optimal arrangement of given nonstructural masses along the
wing span, is considered. It is shown that the optimal control in this problem is·of the bang-bang
type. Optimal distributions with one and two switching points are obtained. It is shown that the
most effective way of increasing the ftutter speed is to locate a concentrated mass at the free tip
of the wing.

The sensitivity analysis and the optimization techniques developed in this paper may find
application in many other continuous or discrete, nonconservative problems of elastic stability.
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